

The thermal network of repurposed cargo containers

HOUSTON GREEN BUILDING RESOURCE CENTER PROGRAM 6/24/15

leonard bachman, architect

professor uhcoa

lbachman@uh.edu

Characteristics of repurposed containers

- Structural integrity
- Inexpensive
- Durable exterior surface
- Small, compact, low surface to volume ratio
- Massive, conductive, high diffusion

CLOSED MODE DYNAMICS OF THERMAL ENVELOPES

Summer	Summer	
Day	Night	Outside Inside
High R-value Low thermal emissivity Reflect sun/Shade Vent skin/double envelope Daylight BBQ	High R-value Low thermal emissivity Re-emit thermal radiation BBQ	Glass pane Glazing
High R-value Low thermal emissivity Admit sun Bake cookies Winter Day	High R-value Low thermal emissivity Block thermal radiation Cover windows Bake cookies Winter Night	Convection Radiation Conduction

BALANCE POINT (thermal equilibrium temperature)

Heat transfer coefficients and energy balance

MODIFIED LOSS C	OEFICI	ENT, BTU/DE	GREE DAY
Σua= (u1 x A1) + (u2 x A2	:) +	
MLC = 24 HR/DAY	x (SuA	+ (ACH x 0.0	18)
BALANCE POINT	Qi		Qc +Qv
GAINS = LOSSES	-		
Qi = Qc+Qi			
Qi = (∑uA + (ACH >	c 0.018)) x (Tin-Tout)
(Tin-Tout) = Qi / (:	ΣuA + (#	ACH x 0.018))
Tout = Tin - {Qi / (2	EuA + (A	ACH x 0.018))}

Different barriers work at different times, but all the events happen simultaneously

Forces, components and barriers

Sensible Thermal Forces Sensible Heat Barrier

- Conduction
- Convection
- Air Change
- Solar Radiation
- Thermal Radiation

Traits

- Conductivity, k, C, u
- Resistance, r = 1/k, R=1/C R=1/u
- Thermal Emittance, ε
- Thermal Bridging
- Thermal Diffusity
- Thermal Inertia (mass)
- Decrement Factor

Sensible Thermal Barrier Types

- Thermal insulation
- Thermal inertia
- Radiant barriers
- Solar reflectance SIR
- Infrared emitters

CONDUCTION- transfer of heat through a solid material by molecule to molecule contact

If a 2000 ft² enclosure skin area is 50% glass (R-2.0) and 50% wall (R-12), what is the overall average insulation?

The answer is R-3.4

The reason is that dealing with R-values is like dealing with denominators, they cannot be averaged directly (e.g., the average of $\frac{1}{2}$ and $\frac{1}{4}$ is not 1/3, but rather 3/8). We have to work instead with conductance, so 1/R = u-value of an assembly's thermal conductivity.

For a 2000 ft² enclosure of 50% glass (R-2) and 50% solid (R-12), we see that: 1000/2 + 1000/12 = 583.3 Btu/hr F for the whole enclosure

The average square foot conductance is thus: 583.3/2000 = 0.29 Btu/hr ft² F and R- value = 1/0.21 = R-4.8

A Neolithic stone hut with animal hide door is R- 6.0

Static versus dynamic heat transfer

MASSLESS, HOMOGENOUS, INSTANTANEOUS

INERTIA, DIFFUSITY, RADIANT, SOL-AIR TEMPS

Radiation—the transfer of heat by net electromagnetic interchange

Radiation (electromagnetic heat): ultraviolet, visible, infrared...

Radiation and re-radiation

Cool Roof Surfaces	Common Materials	
Good VL Reflector	Good VL Absorber	
Good IR Emitter	Good IR Emitter	
Good VL Reflector	Good VL Absorber	
Poor IR Emitter	Poor IR Emitter	
Radiant Barriers	Solar Collectors	

Visible Radiation (Light, VL) Absorption and Reflection

Convection—transfer of heat by motion of a fluid (liquid or gas)

Refrigerated Container Homes

- 0.5 to 2.0 inches of insulation
- Up to about R-12, but still under code
- More expensive than standard dry containers

Almere House, Amsterdam, Bentham Crouwel Architects, 1984 link to Almere House plans and photos

The thermal network of repurposed cargo containers

HOUSTON GREEN BUILDING RESOURCE CENTER PROGRAM 6/24/15

leonard bachman, architect

professor uhcoa

lbachman@uh.edu